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Abstract--When an initially homogeneous suspension consisting of two species of spherical particles 
(with differing size and/or density) suspended in a fluid (i.e. a bidisperse suspension) is allowed to sediment 
it is known that variations in the concentrations of the particles spontaneously occur due to some 
instability. Vertical columns containing one or the other species of particle are formed, with the resulting 
induced motion causing augmented particle sedimentation rates. A theory is developed here which 
explains the instability and column formation in terms of macroscopic equations derived by considering 
the effect of two-particle collisions which are assumed to involve some non-hydrodynamic process (such 
as physical contact) between the particles. Based on the derived macroscopic equations, conditions for 
instability of the suspension are obtained. These results are then compared with existing experiments 
and theory. 
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1. I N T R O D U C T I O N  

Whitmore (1955) noted that in a monodisperse suspension of sedimenting small solid spherical 
particles the settling speed would be increased by adding neutrally buoyant particles to the 
suspension. This observation was explained as being the consequence of structure formation in the 
suspension in which the sedimenting heavier particles would gather together to form vertical 
columns which, being more dense on the average than the surrounding suspension, would set up 
convection currents causing the heavier particles to settle more rapidly. This structure formation 
was further investigated by Weiland and co-workers (Weiland & McPherson 1979; Fessas & 
Weiland 1981, 1982, 1984; Weiland et al. 1984) for more general bidisperse suspensions of spheres 
(i.e. suspensions in a liquid of two species of spherical particles which differ from each other in 
either size and/or density). They found again structure formation in which each species of particle 
would gather together and form vertical columns. Experiments performed by Batchelor & Janse 
van Rensburg (1986) have indicated that initially the instability of the suspension seems to produce 
"blobs" of each species of sphere which grow in size and then under some circumstances (but not 
always) develop into vertical streaming columns. 

In the present paper a theory is developed which gives a possible explanation for the 
initial instability and the column formation in a sedimenting bidisperse suspension. This is 
done by considering the horizontal displacement of particles due to two-particle collisions in 
which some non-hydrodynamic effect (such as particle-particle contact of the colliding particles) 
is taken into account (sections 3 and 4). By considering a situation in which the particle 
concentrations and also the velocity of the suspension (which is assumed to be vertical) vary 
in only one horizontal direction, the probability distribution of horizontal particle displace- 
ments is found in section 5. This is then used in section 6 to obtain equations for the macro- 
scopic behaviour of the sedimenting bidisperse suspension. These results are further investigated 
and given physical interpretation in section 7. The conditions for instability of an initially 
homogeneous sedimenting bidisperse suspension are then obtained in section 8. The conclusion 
(section 9) gives a comparison between the present theory for bidisperse suspension instability 
(in which horizontal variations of particle concentration are considered) and the theory given 
by Batchelor & Janse van Rensburg (1986) (in which vertical variations of particle concentration 
are considered). 
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2. PROBLEM CONSIDERED 

A bidisperse suspension consists of a Newtonian fluid of viscosity # and density p in which two 
distinct species of monodisperse particles are suspended. These two species of particle will be 
labelled 1 and 2, with particle species 1 being uniform spheres of radius a~ and density p~ and 
particle species 2 being uniform spheres of radius a2 and density P2. Assuming that the sizes of the 
particles are sufficiently small that all relevant Reynolds numbers are so small that fluid inertia 
effects may be neglected and also that the particle sizes are sufficiently large for Brownian motion 
to be negligible, we obtain the downward sedimentation velocities G and II2 of isolated particles 
of species 1 and 2 as 

2(p~ - p )ga 21 2(p2 - p )ga 
G =  and I12- [1] 

9# 9/~ 

by balancing the Stoke's drag with the gravity and buoyancy forces on a particle. 
It will be assumed that the particle sizes and the mean distance between neighbouring particles 

are extremely small compared to some macroscopic experimental length scale L so that the 
suspension may be considered as a continuum with well-defined volume concentrations c~ and c2 
of particles 1 and 2 which vary with position with this length scale L. Then c~ and c2 are related 
to the numbers nj and n 2 per unit volume of spheres 1 and 2 by 

4rca~nl 4rca~n2 
c 1 - ~  and c 2 - ~ ,  [2] 

so that the total number of particles N per unit volume is 

3 [cl  c2~ 
I ~  + ~ J .  N = -4~ \ a l  a2/ 

The above conditions may therefore be written as 

and 

[31 

cl + c2 >> 1. [5] 

On the macroscopic length scale L the suspension may possess a macroscopic velocity U which 
may be a gravitationally driven flow resulting from mean density variations of the suspension on 
the macroscopic scale or may be externally imposed (by, for example, moving boundaries). 

We avoid problems concerning the complex nature of particle motion in a concentrated 
suspension by assuming that the concentrations c~ and c2 are small, i.e. 

c l ' ~ l  and c2"~1. [6] 

Then the total solids concentration c = c~ + c2 is also very small. 
We now define a set of dimensional cartesian axes x~, x2, x3 with arbitrary origin and with the 

x3-axis vertically downwards. In order to examine motion on the macroscopic scale it is convenient 
to define a macroscopic dimensionless position vector ~ = (~ ,  x2, ~3), where 

X 1 X 2 X3 ~' = Z '  ~2 = Z '  ~ = Z [7] 

By investigating particle motion on the microscopic scale we will derive equations which determine 
the macroscopic quantities c~, c2 and U. Since the general three-dimensional problem is still 
complex (despite the above assumptions [4]-[6]), we assume that U is in the vertical direction and 
that cj, c2 and U vary only in the horizontal Xl-direction on the macroscopic length scale L. Thus 
we write 

c~ =c~(£~), c2=c2(£~) and U/U0=(0,0 ,  0(£~)), [8] 

a l  a2 
Z , ~ I ,  ~-,~1 [41 
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where U0 is the characteristic magnitude of the velocity field U. The quantity O(ft)  is therefore 
dimensionless and of order unity in magnitude. The concentrations and flow given by [8] have 
approximately the form required to represent the vertical fingers observed by Weiland et aL (1984) 
in their experiments. 

3. TWO-PARTICLE COLLISIONS 

Since at low concentrations, the number of two-particle collisions occurring at any instant is very 
much larger than the number of collisions involving three particles (the former being proportional 
to the concentration and the latter to the square of the concentration), we expect the effect of 
two-particle collisions to dominate. 

Consider the hydrodynamic interaction between a sphere of species l and a sphere of 
species 2 resulting from their sedimentation in an undisturbed fluid flow U of the form [8]. The 
fluid velocity u and dynamic pressure p in the neighbourhood of the spheres satisfy the creeping 
flow equations 

pVEu- Vp = 0, V . u = 0  [9] 

with the no-slip boundary condition on the sphere surfaces. 
The velocity and angular velocity of the spheres are then determined by the requirements that 

the hydrodynamic force on spheres 1 and 2 be FI = (4g/3)(pl - p)ga~ and F2 = (4g/3)(p2 - p)ga~, 
respectively, upwards and that the hydrodynamic torque on each sphere about its centre be 
zero. Suppose that at some instant during the interaction the spheres have the positions shown in 
figure la, the velocity of the centre of sphere 1 is (v,, v2, v3) relative to a stationary observer. 
If all velocities are reversed, then by making use of the linearity of [9], it is seen that we have the 
situation shown in figure lb. A reflection of the system in the xtx2-plane then yields the situation 
of figure lc. Thus, a change in sphere configuration from that in figure la to that in figure lc causes 
the velocity of the centre of sphere 1 to change from (vl, rE, v3) to ( - v , ,  -v2, v3). It is therefore 
seen that the orbit of the centre of sphere 1 relative to a stationary observer is its own mirror image 
about the xt x2-plane at the level where the line joining the sphere centres becomes horizontal during 
the interaction (see figure 2). It therefore follows that the x, and x2 coordinates of the centre of 
sphere 1 after the interaction are identical to their values before the interaction. In other words, 
sphere 1 is not displaced horizontally by its interaction with sphere 2. Similarly, sphere 2 is also 
not displaced horizontally by the interaction (see figure 2). In a similar manner it is seen that spheres 
are not displaced horizontally during other types of two-particle collisions (between sphere 1 and 
sphere 1 or sphere 2 and sphere 2). Thus, it follows that there can be no horizontal flux of spheres 
1 or of spheres 2 in a suspension in which interactions between the spheres are purely hydrodynamic 
and the effects of only two-particle collisions are taken into account. Since the phenomenon 
observed by Weiland et aL (1984) involves horizontal fluxes of the two species of spheres, it cannot 
be explained by purely hydrodynamic two-particle interactions. The observed phenomenon must 
therefore result from either 

(a) interactions between three or more particles 

o r  

(b) interactions between two spheres involving an effect other than the purely 
hydrodynamic inertialess flow considered above. 

While individual spheres are not displaced horizontally in purely hydrodynamic two-sphere 
interactions, it is probable that they are in purely hydrodynamic three-sphere interactions [see (a) 
above] due to the lack of symmetry for such collisions. However, it is not clear whether this will 
(or under what circumstances this will) cause horizontal fluxes of each of the species of spheres. 
What is certain is that if all sphere interactions (whether between two, three or more spheres) 
are purely hydrodynamic, then the behaviour of the suspension is reversible in the sense that if 
after a certain period of time, during which the particles move under the influence of gravity 
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Figure 1. (a) Due  to gravity forces on the spheres and to the flow field U(xn ) the velocity of  sphere 1 is 
(v n , v 2, v3). (b) Situation obtained from figure la by reversing all velocities (and stresses). (c) Situation 

obtained f rom figure Ib by reflection in xlx2-plane. 

and superimposed flow U(x~), the direction of gravity and of U(x,) are reversed, then each 
individual particle in the suspension will retrace its original motion in the reverse direction. That 
this is so is due to the linearity of [9] and boundary conditions which determine the motion [see 
Slattery (1964)]. Thus, the macroscopic behaviour of the suspension on reversing the direction of 
gravity and U(x~) is the same as that of reversing the direction of time. Furthermore, such a 
suspension possesses an unfading infinitely long memory, in that the effects of any such gravity 
and U(x~ ) reversal are felt equally strongly however distant in the past such a reversal occurred. 
As mentioned above, it is not certain whether purely hydrodynamic interactions can be responsible 
for the finger formation observed by Weiland et al. (1984) but tf they can, then a reversal of the 
direction of gravity after the fingers have formed would cause the fingers to disappear (as if time 
were reversed) and the homogeneous suspension to be regained. Then at a still later time fingers 
should reappear. 

Non-linear effects acting during the collision of a pair of spheres [see (b) above] can cause the 
individual spheres to be displaced horizontally. For example, if the sphere surfaces are rough they 
may make actual physical contact if at their position of closest approach (position A in figure 2) 
the predicted gap between the spheres is less than the height of the dimensional surface roughness 
A*. Such a roughness would physically push the spheres apart so that their orbits would be as 
shown in figure 3. Thus, starting at position B, the spheres will move under purely hydrodynamic 
interactions until position C, where the predicted gap between the spheres takes the value A*. Then, 
assuming that the roughness prevents relative motion of the sphere surfaces at the contact point, 
the spheres will rotate as if rigidly attached to each other until the sphere centres are on the same 
horizontal level (position D). Taking the gap between the spheres at this position as A*, the 
subsequent motion may be calculated by again assuming purely hydrodynamic interactions 
between the spheres. The roughness of the spheres will in general be of great importance: one need 
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Figure 2. Orbits of the centres of spheres 1 and 2 during a purely hydrodynamic collision. 

only note that for the case of neutrally buoyant equal-sized spheres al = a2 (= a say) in shear flow, 
U(x~ ) = Vx~, if the initial horizontal separation between sphere centres is 0.316a in the xcdirection 
well before the collision [corresponding to C = 0.1, B = 0  in Arp & Mason (1977)] then for 
roughness of the spheres to be important A*/a must be at least 9.5 x 10 -5 [see Table V in Arp & 
Mason (1977)], which for the spheres of radius 68/~m used by Weiland et al. (1984) gives a 
remarkably small value for A* of 6.2 nm. 

Another non-linear effect which may be of importance, particularly for small particles, is the 
repulsion which may exist between particles due to electrostatic double-layer forces. This should 
have an effect very similar to that of the surface roughness in pushing the particles apart 
horizontally as they collide with each other. Additional non-linear effects which may possibly be 
important during the collision of a pair of spheres include non-Newtonian and non-continuum 
effects in the liquid, cavitation and elastic deformation of the spherical particles. Should the 
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colliding particles be immiscible drops instead of solid spheres, then non-linearity is introduced due 
to the deformation of the drop surfaces during the collision process. 

In the present paper we consider only horizontal displacements of the spheres resulting from 
two-sphere collisions with some non-linearity present. It will, however, be shown that under the 
assumed condition of low solids concentration that the effects of hydrodynamic three-sphere 
interactions are much smaller than those produced by the above two-sphere collisions and may 
therefore be neglected. 

4. H O R I Z O N T A L  D I S P L A C E M E N T  DUE TO A C O L L I S I O N  

Consider the motion relative to a fixed observer of a sphere of species i (i = 1, 2) which interacts 
with a sphere of species j ( j  = 1, 2), the centre of the latter sphere having a position vector relative 
to the centre of the former which possesses horizontal components (6Xl, 6x2) before the inter- 
action takes place (i.e. when both spheres are moving vertically under gravity and the flow U(Xl)). 

sphere 1 

gravity 

j !i 

Figure 3. Orbits of the centres of spheres I and 2 during a collision of rough spheres where physical contact 
is made between the spheres from position C to position D. 
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F igure  4. Pos i t ions  of  two spheres  pr ior  to a coll ision.  

Define the polar coordinates 

6Xl = r cos 0, 6x 2 = r sin 0, [10] 

as shown in figure 4. 
As a result of  the surface roughness of  the spheres (or of some other non-linear effect), the centre 

of  sphere i after the interaction (when both spheres are again moving vertically) will be displaced 
a distance Ax, in the Xl-direction, which will be denoted by F,j. If  Xl is the value of  Xl at the initial 
position (before the collision) of  the centre of  the sphere i we may expand the undisturbed flow 
field U(Xl)  in the neighbourhood of  the spheres as 

t U(x,)=U(21)+ -~x(2i) (Xl-21)+ ~-~x~(X,) (Xl-2, +. . . .  [11] 

Thus, F 0 for i = 1, 2 and j = 3 - i must be a function of 

dU d2U 
r, 0, A*, al, a2, VI, II2, - -  

dx~' dx~ . . . . .  

The uniform velocity U(~. ) does not appear since it may be eliminated by translating the observer 
with that velocity. We now use dimensional analysis and also make use of 

dU Uo dO d2U Uod20 
dx---~ = -L- dY---~' dx~ - L 2 dY~ etc., [12] 

obtained from [7] and [8], in order to obtain the functional form for AXl shown in table 1. 
Here ( V 2 -  VI) rather than V~ or V2 has been used to non-dimensionalize t] '  since, by doing so, 
the subsequent analysis is simplified. For  the interaction between a pair of spheres due to 
sedimentation alone (with U(Xl)  = 0), the value of  AXl is denoted by F ~  and has the functional 
form shown in table 1. Results are not given for F~d for i = j  = 1 or i = j  = 2, since identical 
spheres on sedimenting keep their same relative positions (Goldman et al. 1966) so no collision 
will occur. 
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Table 1. Functional form of  Ax~ for sedimentation and flow and also for sedimentation alone? 

i j Form of  Ax t for sedimentation and flow 

1 2 

2 I 

1 1 

2 2 

r A* a 2 V 2 ( a l + a 2 ) U o D  , (al+a2)2Uo ) Axl = FI2 , O, 
al +a2 ~ + a 2  al + a 2 ' a t '  V I ' L ( V 2 S V O I )  ~ "L2(V2 - Vi)  0 " , . . .  

A* a I V 1 (a I +a2)U o (a I +a2)2Uo "~ Ax  I r , O, 
a , + a 2  - F 2 ` = F ' 2  a , + a  2 a , + a 2 ' a 2 ' V  2' L ( V z - - V I )  0 ' '  ~T(~-2=~I)  0 " , ' ' "  ) 

ax, (r a" ) 2a--~l=Fn=Ftz ~a, O,~at, +I, +I, °o, °° .... 

Ax I / r A* ) 
F22= F, t + l ,  + l ,  oo . . . .  

i j Form of  Ax I for sedimentation alone 

Ax I 
1 2 

ai + a 2 

Axl 
2 1 

a~ + a 2 

/ r A* a 2 V 2 
= F l 2 ~ = F i 2 / - -  0 , - - ,  , V i , 0 , 0 ,  

\ a l + a 2 '  a l + a 2  al 

=F2Bd = F , 2 :  r , A" a, V l 0, \a,+a2 6 

) 
) 

dO d20 
?/_7' = ~ ,  0"  = ~-~t etc. 

For pure sedimentation, the collision between a sphere 1 and a sphere 2 must, be symmetry, result 
in each sphere being displaced in the radial r-direction so that Axj for each sphere must be 
proportional to cos 0. Thus, F~2~ must be of the form 

F,2~=cosO.G,2~(a r A* a2 ~t) [13] 
I _[_ a2 , al .k. a2 , al , 

5. PROBABILITY DISTRIBUTION OF Ax I 

Assuming that the sizes of the two species of sphere are of the same order of magnitude (i.e. 
[a2/all is neither very small nor very large compared with unity), we note that the typical time 
for a collision between spheres [=min(a/[  V2- Vl l, 1/ U~ )] is very much smaller than the typical 
time between collisions [=min(ac-t/3/[ V:- Vi i, c-1131iU )]. Here and elsewhere, a and c denote 
characteristic values of particle radius and concentration and primes denote differentiation with 
respect to xt. Thus, in any time interval At satisfying 

( a [ ~-[-~l ) (] ac -113 c ~---13-'~ 
rain [ V2 - V, I' ,( At ,~ min V~-z- ~', I'1 u ' l :  [14] 

the probability of any sphere undergoing more than one collision is very small, so it will be assumed 
that a sphere undergoes either no collision or just one collision. In addition, any collision that 
occurs may be considered complete so that sphere displacements in the x:direction are as described 
in the previous section. 

We consider now a sphere of species 1 with centre initially at position x~ = ~ and calculate the 
probability distribution p(Ax~) of its displacement Ax~ in the x:direction in the time At. In this 
time interval the sphere either undergoes no collision (giving Ax~ = 0) or it collides with a sphere 
2 or with another sphere 1. However, it will be assumed that the concentrations c~ and c2 of the 
two species of sphere are of the same order of magnitude (i.e. c~/cl is neither very small nor very 
large compared with unity) and that in some sense (to be discussed later) the effects of particle 
sedimentation dominate over that of the shear U'(x, ). Since spheres of the same species have no 
relative motion when undergoing pure sedimentation it is seen that under the above assumptions 
the velocity of approach to the sphere 1 by another sphere 1 is very much lower than that of a 
sphere 2. It therefore follows that in the time At there is a much greater probability that the sphere 
1 under consideration will collide with a sphere 2 rather than another sphere 1. It is this situation 
which we will consider in the present paper. Thus, we assume that either the sphere 1 undergoes 
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no collision or a collision with a sphere 2 in the time At. The inclusion of  the effects of  collisions 
with another sphere 1 (which would be important for Cl ~> c2 or for large U'(Xl)) will not be 
considered here. It is shown in the appendix that under the conditions of  low concentration 
considered here that the horizontal movement of  particles due to purely hydrodynamic interactions 
between three or more spheres may be neglected. 

If  the centre of  the sphere 1 is at x~ = ~l before the collision with a sphere 2, the centre of  the 
sphere 2 will be at Xl = Xl + r cos 0, x2 = r sin 0, as shown in figure 4. The velocity of  the centre 
of  the sphere 1 before the collision will therefore be { U(.~) + V l } downwards, while that of  the 
centre of  the sphere 2 will be {U(~I + r cos 0) + V2}. However, since U should be considered having 
the form [8], we should write the velocity of  sphere 1 as { U0 U(~I ) + 1"1 } and that of  sphere 2 as 
{U00(x~ +r/L  c o s 0 ) +  V2}, where Xl =Yct/L. The magnitude of  the velocity of  the sphere 2 
relative to the sphere l is thus [ U0{O(X~l + r/L cos 0) - U(-~I)} + I/"2 - VI [. The number density of  
the spheres 2 at x = ~ + r cos 0 is n 2 ( . ~  l + r/L cos 0) so that in the time At the number of spheres 
crossing a horizontal plane (Y3 fixed) and approaching the sphere l for r, 0 lying in the range 
(r, r + dr) and (0, 0 + dO) is 

p(r,O)drdO=n2 ) ? ~ + ~ c o s 0  U0 0 X l + z C O S 0  - U ( X l )  + V 2 - V I  AtdrdO. [151 

As a result of  such a collision the displacement AXl of  the sphere 1 in the Xl-direction is given by 

at + a2 = F I 2  , 0 , . . .  , [16] 

as indicated in section 4. If for any fixed 0, we solve this equation for r/(al + a2) in terms of  
Ax~/(al +a2), we will obtain 

r . /  AXl ) +a2=r,2(~,O,...,. [17] 
a l  

Changing from the (r, 0) variables in [15] to (q, 0) variables, where 

Ax 1 
q (at + a 2 ) '  [18] 

so that r = (al + a2)F*(q, 0 . . . .  ), we obtain the probability distribution p(q, 0) of  r /and 0 as 

p(q, 0 ) =  n2[xl +[al +a2\ c o s 0 ]  Uo{[~[.~, al +a2 . 

where we have used the result 

+ v, (al a I [19] 

a(r,O) = (ai + .[~F*] [20] 

If this is integrated with respect to 0, we obtain the probability distribution p(q) corresponding 
to the change AXl in x~ for the sphere 1 in the time interval At as 

Since by the assumptions [4], (al + a2)/L is very small, we may expand terms in the integrand of  
[21] as 

n2[x, " faI +a2'--* cosO]~ .~ . . [ai + a 2 , _ .  • 
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and 

[ o{ Ix 01 
,, I/a, +a2"~_,  (a, +a2"~ 2 [23] ~]G-  v,]+ tJo~--Z--flt,zcosOO'(.~,)sgn(Vz- v,)+O \ L J' 

where, for [23] to be valid, we require that 

(al + a2)Uo 
L [ V 2 - V, ] '~ 1, [24] 

where Uo is a characteristic value of the velocity U(x~). Substituting the expansions [22] and [23] 
in [21] we obtain 

P(q)=(a'+a2)2A~(~')g'(q)+ L At[f2(~l)+f3(~,)]g2(~)+O (.a, 2)4A/ , [25] 

where 
f , G )  = n~(x,)l v~ - v,I,  

f2 (x~) = U0 n2 (~)  g ' ( x ,  )sgn( V 2 - V, ), 

f3 (x,) = n i(:~, )1 V 2 - V, l, [261 

and 

and 

gl(tl)=f~'~F*2Off~ 2 dO 

fo 2'~ ¢~* ~2 l OF*2 gz(q) = , - ,2 ,  [-~-q cos 0 dO [27] 

As a result of the assumptions [4] and [24] it is seen that F~2, given in table I, may be expanded 
to give 

(r  )~a+a2)~o~:r0 .... )+O~_~o~)~o~ ,~, 
t / = r , 2 ~  a - - - - ~ , 0  . . . .  4 L(V2S-VT ) \a,.-t-a2' \ ( : - V , ) J  

or, by [13], 

( .... ) +  ,20, tl =cos0G2~d a~ + a2' L(V2-  V1) kal + az 

The first term in [29] represents the sphere displacement due to sedimentation alone, while the 
second term gives the correction due to the shear flow. As a result of the linearity of the creeping 
flow equations [9] and symmetry it may be shown (see figure 5) that the additional sphere 
displacement due to the shear is the same if 0 is replaced by (re - 0). Thus, Pt2 in [29] is unchanged 
if 0 is replaced by (n - 0), i.e. 

Pl2 ~- az rt - 0, = Fl2 az , • . . , . . . .  

Due to sedimentation alone 

(a r ) 
-~ - a , ~  ~-a2 

COS 0 I ' 

which we suppose may be solved for r/(al + a2) to give 

al + a2 0 ' "  "" " [32] 
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Figures 5(a)-(e). The figures show the behaviour of the motion of the sphere 1 as it interacts with 
the sphere 2 in the presence of the shear. (a) Due to the shear flow suppose the additional velocity of 
sphere 1 is v as shown. (b) Situation obtained from figure 5(a) by reversing all velocities (and stresses). 
(c) Situation obtained from figure 5(a) by rotating through ~ about the x2-axis. (d) Situation obtained 
from figure 5(b) by reflection in the x~ x2-plane. (e) Situation obtained from figure 5(d) by rotating through 

n about the x2-axis, 

Then solving [29] for r/(al + a2), we  obtain the value of F*2 correct to order (a I + a 2) U 0/L(V 2 - V 1 ) 

as 

(c--~sO) (a'+a2)U° U' ( ( c o - - ~ )  . . . .  ) ( r / ) ~  [33] 

We thus obtain, by expanding IdF*2/ r/I in terms of [(a, + a 2 ) U o ] / [ L ( V  2 - V,)], 

OF*2 G~'~(c--~sO) (ai+a2>Uo U' sgn{G~Z'd(c--~sO)} 
dr/ = [COSO I L(V2-- V,)cosO sgn(cosO) 

×-~ ff, z G*2~ ,0 G*~ + " ' .  [34] 

In [33] and [34] above primes denote differentiation with respect to the first variable listed so that 

OG*~ 
G~'2~d(~ . . . .  ) = -  

By substituting the values of F* 2 and given by [33] and [34] into [27], we obtain 

(al + a~)Uo ~ 
g, (~l) = g,o(q) q L(V2 ~ ~ )  U' g,, (r/) + . . .  [35] 
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and 

where 

and 
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h i ( a ,  + a2yo_) 
g2(7) = g,o(q) + t/~-(~22 _ Vt)J' [36] 

sgn G*2'~ 

gt t (7 )=  - o Icosol  

d , q ,, q 

Thus, the value of the probability distribution p(r/ ;~ t) of r/ (corresponding to a displacement 
Ax, in a time interval At) for a sphere I with centre initially at ffl = ~t is given by [25], [35] and 
[36] as 

" t (at + az)Uo p(~/; ~, ) = (a, + a2) 2 At ~ fl (-~,)g,o(t/) 4 L(V2 Z ~t)  U'(~t )f~ (xt)gt, (q) 

+ ( - ~ )  If2 (-~t ' +f3 (.~,)] g2o(q) + • " '}. [40] 

If we write 

~=-7,  0 = ~ - 0  

and change from the (7, 0) variables to (9, •) variables in [37]-[39] and make use of result [30], we 
obtain 

gt0(--7) = gto(q), 

g , t ( - -q )= - -gH( r / )  and g 2 o ( - q ) = - g 2 0 ( 7 ) ,  

so that gt0 is an even function of q, while g .  and g20 are odd functions of t/. 

[41] 

[42] 

6. MACROSCOPIC EQUATIONS 

In order to obtain the macroscopic equations for the volume concentration ct (xt) of the spheres 
of species l, we consider the transport of spheres l into and out of  a volume of the suspension 
in the form of a thin slab ~ < xt < ~t + d~t with unit cross-sectional area in the .~2~3-plane. In a 
time At the number of spheres of species 1 leaving such a volume is 

nt(~t) d~t p(7 ;~ t )d~,  [43] 

while the number of spheres 1 entering the volume from outside is 
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Thus, the increase An, (~1) of n~ (~l) in the time At is given by 

Since (am + a2)/L <t 1, the integrand may be expanded to give 

f al + a2 , r  . _.. f f= _oo q A n , ( x , )  = - i f -Z--  ]L.ltX,) (~; ~,) dr# 

I i r#P (r#; -~l ) dr# 

. 1 f a ,  + az~Z[  - .= r#2 02P 
+ T t , ~ , )  L n'`x';) =_~ b-~--~, ~(r#;'f')dr# 

+ 2n; (g,) _ ~ r# ~ (r#; ,~,) dr/ 

,, -~ fro ] o ( a l + a 2 ) 3  +n, (x , )  :-~o r#2p(q;x')dr# + It L ] '  [46] 

where, for example (Op/O~l)(r#;.~,) means the partial derivative of P(r#;gl) with respect to if, 
evaluated at ffl = ~,. If the value ofp(r#;;~,) given by [40] is substituted into [46], we obtain an 
equation, which when divided by At and the limit At--*0 taken, yields 

On, (al+a2)4 0 [ _  ( U__~o _~) fro 
6Gt -- L2 ~ X l  HI Otfl =-oo r/gll dr# 

1 ,' / --n,(f2+f3) r#g20dr# +~(nif~ +nile)  r#2gi0dr# + . - .  , [47] 
= - o o  = - c ~  

where we have used the result, obtained from [41], that 

; f  dr# = O. [48] r#gl0 
= - o o  

In [47] we have also replaced ~, by the general value ~1 of the coordinate. Substitution of the values 
off~, fz and f3 given by [26] then yields the macroscopic equation for nl(ffl, t) as 

On~ (a, a 4 + 2) O .. , . , , . . . . .~ ,  
Ot - -Li t3-~l [t°tl +Pi  )Uoo nln2sgn(V2-- VI) 

+ 3*n,nTlV2- V,I + ~*(n,n'2+n'lnDlV2 - v,I +. . . ] ,  [491 

where 

~t*= - f ~ _ ~  r#g~ dr#, fl*=-f~=_~o r#g2°dt/ and 3,1"= + f ~ _ ~  r#2g~odr#. [50] 

If we write [49] in terms of the volume concentrations c~ and c2 of the two sphere species using 
[2] and change to dimensional variables using [7] and [8], we obtain 

Oc, 0-~[ OUsgn(V2-V')+fl*c'OC2 =~, (~, + t~,)c, C2Ox- 5 ~ ] v 2 -  v,I 

+½,,*(c, 0~ 0c, ,, + .J. [,11 yATx,+<~)lV~- V,I . .  

MF 16/4~F 
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where k~ = 3(a~ + a2)4/4na 3 is a constant. The values of e*, 13" and y l*, obtained by substituting 
the values of g~o, g .  and g2o given by [37]-[39] into [50], are 

f-[ r/sgn G*2'~ 

~t=j0o_~o= o Icos01 

/3*=_ f f rl~G*2~( ~----~[G*£d sgn(cos 0) dr/d0 
J ,=-~J0=o ~ \ c o s t u )  l 

and 

i' = -~.  =o Icos 01 G,% d~ dO, [521 

which may be further simplified by changing the integration variables from (r/, 0) to (~, 0), where 
is defined by 

= , t/ 

o r  

)7 = G,2~d(~), [531 
cos 0 

and thus represents the quantity r/(a~ + a2). Thus, we obtain 

e~' = - ~ f f , 2 ( ~ ,  0 )  d ~  dO, [541 
=0 =0 

/3* = --rt f;= 0 ~2G'2sd(~) d~ [551 

and 

y* = +n  ~[Gn~(~)12 d~, [561 
~=0 

where integration by parts with respect to ~ has been used in order to yield [54]. By inter- 
changing the roles of the spheres 1 and 2, we see that the macroscopic equation for c2 in dimensional 
variables is 

C3C20_[ _k2~___~tt[(ot, ~ 
OU +/3*)c, c2 =--sgn(V, - V2) VXl 

1 [ ~CI ] 
+ & c 2 ~ l  v2-  v ' l+  Ox,/'v2-v'l+" j, [571 
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where k2 = 3(a~ + a2)4/4rm~ is a constant and where 

f ~  12" -- 4F2, (4, 0) d~ dO, 
0t* = d ~ = 0  do=o 

fl~* = - r e  42G21~(4) d4 
=0 

and 

and from table 1 (and [29]) 

[58] 

and 

[59] 

~ at~ 

7" = + n  4[G2,sd(4)]2 d4, [60] 
=0 

A *  a l  VI = G i 2 s d  4,  - -  , - - ,  
G21sd 4, al -(_ a2 , a-- 2 , a l W a  2 a l  

[61] 

OP 
- -  = 0 ,  [ 6 4 ]  
OXl 

K = - - pg 
P 

and v = #/p  is the kinematic viscosity of  the fluid. Since, by [64], P is independent of  Xl it follows 
that in [63] K can be only a function of  time t. The inertia term has been included in [63] since 
the Reynolds number based on the macroscopic length scale may possibly be of  order unity or 
larger. 

The diffusion equations [51] and [57] together with the momentum equation [63] constitute a set 
of  three partial differential equations for the concentrations ct and c2 and the velocity field U. It 
should be noted that in deriving [51] and [57] it was assumed that the time for a particle collision 
was very much smaller than the time over which macroscopic quantities vary. That this is indeed 
so in general, is seen by noting that the particle collision time (or order a/] I"2- VI [) is very much 
smaller than the characteristic times predicted from [51] and [57]. However, shorter times could 
occur in the flow field (given by [63]), particularly if such a flow were to be produced by the 
impulsive motion of  solid boundaries. 

where 

and 

F21 4, 0, ~ - ~  a2 , al = - -F IE  4, 0, ~ - ~  a2 , a2 [62] 
dt 2 ' a I ' • 

In addition to the two non-linear coupled diffusion equations, [51] and [57], which we have 
derived for c~ and c2, we must also consider a vertical momentum equation since the variation of  
Cl and c2 with xj will in general result in mean density variations of the suspension in the Xl-direction 
which would affect the flow field U(xt ,  t). A unit volume of the suspension contains nl spheres 1, 
each of  mass 4~a~pl/3, and n2 spheres 2, each of mass 4na3p2/3. Thus, the macroscopic density 
of  the suspension is 

4 3 4 3 
P + ~nal(Pi - p)nl + ~7~a2(P2 - -  p)n2, 

which by [1] and [2] may be written as 

9 ,?iv, 
P + 2g \ a 2 + a~ i]" 

Thus, if P is the pressure, the momentum equations on the macroscopic scale are 

82U _. 9 l'Ci Vl c2 V2"~ 18U 
Ox 2 K+2~-~--12 + a 2 ] = v  ~- [63] 
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7. P H Y S I C A L  I N T E R P R E T A T I O N  OF THE RE SUL T S 

From the macroscopic diffusion equation [51] for cl, it is observed that the flux Jl (i.e. the volume 
of spheres crossing unit area per unit time) of spheres 1 in the positive x,-direction is 

CaUsgn(V,- V,)+fl*c, c9c2 V2- V, I 

C, x +C20x,],v2- v , l+ . . . .  [651 

In the light of the derivation of  this expression, given in sections 5 and 6, we will give a physical 
interpretation of  each of the terms appearing in [65]: 

(i) The flux -k~ [~* c~ c2(OU/&x~)sgn(V2- V2)] is a convective flux of the spheres 1 
resulting from the adjustment to the orbits due to the small shear flow which 
is present. This is shown in figure 6, from which it is observed that, at least for 
the case shown, FI2 is negative, giving (see [54]) e* > 0, with the flux being in 
the negative x~-direction (for V2 > V~ and OU/Oxl > 0). However, there may 
possibly be situations for which e* is negative. 

(ii) The flux -kl[fl*clc2(&U/&xl)sgn(V2-Vl)] is a convective flux of  spheres 1 
resulting from sedimentation alone and is due to the fact that the collision 

Flux of spheres 1 

j) I 
, Y  I "0V 

~ I I  7 orbit for sedimentation 

~r~i~iorrected for shear 

I 

Figure 6. Flux of spheres 1 resulting from the disturbance of the orbits due to the shear flow. 
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gravity I 

I 
I 

I 
sphere I orbit 

l 

I 
(a) 

sphere 2 
- initial position 

Lower f r e q u e n c y  o f  s p h e r e s  2 

j H i g h e r  f r e q u e n c y  

s p h e r e  1 

I \--  displacement due  t o  (BI d i s p l a c e m e n t  d u e  t o  (A) 

Net  f l u x  o f  s p h e r e s  i 

(b) 

Figure 7. (a) The orbit o f  sphere l due to sedimentation alone. (b) Flux of  spheres l resulting from a higher 
collision frequency with spheres 2 on the downflow side (if V 2 > V l). 

frequency with spheres 2 is higher on the upflow side (if sphere 1 is the less dense 
sphere, i.e. V: > Vl) (see figure 7). 

(iii) The flux - k l  [(8* + ~*)Cl (dc:/dx~)lV2- V1 I] is a flux of the spheres resulting 
from sedimentation alone and is due to the fact that the collision frequency with 
spheres 2 is higher on that side of sphere 1 where the concentration of spheres 
2 is higher (see figure 8). 

(iv) The flux - k  I [ l~.  C2(~C1/(~X I )1I/2 -- VII] is a diffusive flux of spheres 1 from high 
to low concentrations of the spheres 1 (since, by [56], ~ l* is strictly positive) and 
is due to the random displacements they undergo as a result of  their collisions 
with spheres 2 as they sediment. 

While 3'~* is always positive, the signs of ct* and r*  are uncertain. Although the situation 
indicated in figure 7 shows G~2,d(~) as being negative (and hence the value of 8"  from [55] as 
positive), the interacting particles will in general experience a lift force which can result in a net 
horizontal displacement of the particles (especially if VI and V2 are of the same sign) for which 
G~2~(~) may be positive (leading to a negative value of 8*). 
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It is observed from [65] that a flux of spheres 1 can be generated by either (a) a shear flow, (b) 
a gradient in concentration of spheres 2 or (c) a gradient in concentration of  spheres 1. While the 
flux due to the gradient in concentration of  spheres 1 is always from high to low concentrations 
of  spheres 1, the flux due to a gradient in velocity or to a gradient in concentration of spheres 2 
may be in either direction (depending on the values of 0t*, fl* and 7 ~'). 

For the special situation of  equal-sized spheres (a,/a2 = + 1) which sediment with equal speeds 
but in opposite directions (V,/V2 = - 1 )  and which are very rough [A*/(a, + a2) is not too small], 
the interaction between a sphere 1 and a sphere 2 can be approximated by the motion shown in 
figure 9 in which sphere 1, on reaching the same horizontal level as sphere 2, continues to move 
vertically as if sphere 2 has a negligible influence. Since, by symmetry, the horizontal displacement 
of  sphere 1 in space is one-half its horizontal displacement relative to sphere 2, and since (r, 0) 
describes the horizontally projected initial position of the centre of sphere 2 relative to that of 
sphere 1, it follows that 

P,~(¢, 0) = o, 

{o GI2sd(~) = - -  ¢) for 0 ~< ¢ ~< 1, [66] 
otherwise. 

Then from [54]-[56], 

7[ 7[ 
* = 0 ,  f l * = - ~  and 7 " = 4 8 .  [67] 

In addition, from [61] and [62], we see that G2,~ = G~2~ and F2, = -ff~2 so that equations [58]-[60] 
yield 

7[ 7[ 
~ * = 0 ,  f l * = ~  and 7"=4--  ~. [68] 

This means that for II2 > Vi there is, due to a velocity gradient, a flux of spheres 1 (the slower 
sedimenting particles) towards the upflow and a flux of  spheres 2 (the faster sedimenting particles) 

V e 
2 

L o ~  frequ~cy 
o f m  2 

d~-qplac~mmt due  t o  (A) 

~ f~equemT 

, I 

(s I (A) 

s p h e r e  1 
- i n i t i a l  p o s i t i o n  

) I . 
, \ 

clisp]~Dem~nt due to (B) 

,.~=======~ 

Net f i r m  o f  s p h e r e s  1 

Figure 8. Flux of spheres 1 resulting from a concentration gradient of spheres 2. 
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s p h e r e  2 
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g r a v i t y  

r - 

Figure 9. Approximate motion of very rough spheres for the situation where al/a2= +1 and 
v,/v2= -I .  

towards the downflow. In addition, due to a concentration gradient of  spheres 2, there is a flux 
of  spheres 1 from high to low concentrations of spheres 2. 

8. S U S P E N S I O N  S T A B I L I T Y  

We consider a bidisperse suspension which is initially at rest and contains a volume concentration 
c~0 of  spheres 1 and a volume concentration c20 of  spheres 2 and examine its stability to a small 
sinusoidal disturbance to the concentrations in the horizontal xrdirection.  As a result of such a 
disturbance a small sinusoidal flow U(x~) will be generated. Thus, we take 

C¿ ~ Cl0 ~ ECII e fit e i~x, 

c 2 ~--- c20 • £c21 e ~t e/~x, 

U = E Ut e p' e/~x, [69] 

where ~ is the wavenumber, ,6 is the growth rate of  the disturbance and E is a small parameter. 
Substituting these values into [51], [57] and [63] for Cl, c2 and U and neglecting terms of  order E 2 
and smaller, we obtain a set of  three homogeneous linear algebraic equations for Clt, c2~ and Ul. 
The condition for a non-trivial solution then yields the characteristic equation 

v~ - E + (B + c~ -~) .1 v ~  v, 
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for the value of/~, where 
' , * 

1 / 7 l  72 "X 1 , B =  + 

C = 2 ( V 2 -  Vl) ( ~ * + f l * ) -  . ( ~ * + f l * )  , D = - ( f l * f l * + ½ f l * y * + ½ f l * 7 * )  

and 

E 9 V l ) f  VIcm° * * *+27,)+2V2(~m +fl*)]  -~-~ [(~ +/~2)(,8, ; * : * * 

2(V 2 - 

V:2o[(~ ,+~, ) (  M ! • 1 , , } - -  + D ' 2 ) + 2 7 , ( ~ 2  +fl*)]  • [71] a~ 

For simplicity the inertia term involving &U/Ot in [63] has been omitted. Solving [70] for the growth 
rate p, we obtain 

IV2_ VI I - -~ -~[ - -B- -C~-2  + {(BZ--4AD)+Igc-2(2BC--4AE)+~-4C2}~/2], [72] 

with the suspension being stable for disturbances of the type [69] if the real parts of both values 
of/~ are negative VJ~ > 0. Otherwise, if the real part of either value of/~ is positive for any [ > 0, 
the suspension is unstable. From an examination of the values of/~ given by [72], it is therefore 
observed that, since A and B are always positive, the suspension is stable iff 

C > 0 ,  D > 0  and E > 0 .  [73] 

For the example given in section 7, for which al/a2 = + 1 and V 1/I"2 = - 1 ,  if the values of 
• , fl*, 7" etc. are as given by [67] and [68], then 

A =  2 , B = - -  + , 
144a i cl0c2o 1152al \Clo C2o] 

7~ 2 7~ 2 
C -  D = - - -  

64a~' 384 

and 

37[ 2 
E = ~ ( C , o + C 2 o ) ,  

so that the suspension is unstable with growth rate ,b given by 

P = 1K'{ - s  + 18a( -I + [(s 2 + 96) + 180s/( -t + 3242(-2]1/2}, 

where 

[74] 

[751 

p =  alfi h ' =  (at~)2 and s =  cl°+c2~° [76] 
c,0c 01v2- v,l' 

For the bidisperse suspension used in the experiments performed by Weiland et al. (1984), for which 
al = a2 = 70 # m, V~ = - I"2 - 0.06 cm s- 1 and Cl0 -~ c20 - 0.17, we see that for g < 6 (corresponding 
to al~ < l) the growth rate fi does not change very much with wavenumber ~, having a value for 
all disturbance wavelengths of approx. 1.0 s -I. This would seem to agree with the experimental 
observations that irregular columns were observed at times of order 3 s after the start of 
sedimention. However, it should be mentioned that for wavelengths 90.3 cm, for the fluid used 
(v ---0.05 cm 2 s -I) the results would be modified by the inertia term in [63] which was neglected. 

9. CONCLUSION 

By taking into account two-particle interactions in which the particles make physical contact with 
each other, it is possible to examine the sedimentation of particles in a bidisperse suspension 
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consisting of two different species of solid spheres suspended in a fluid. Such particle interactions 
can result in the particles being moved horizontally as they sediment. By writing continuity 
equations for each species of particle it is possible to obtain the macroscopic equations [51] and 
[57] for the volume concentrations Cl and c2 of the two species of particles. Only the situation in 
which c~, c2 and the mean vertical velocity U of the suspension vary with one horizontal coordinate 
x, and with time t has been considered. These equations, [51] and [57], are macroscopic non-linear 
diffusion equations in which a horizontal flux of one species can be generated by either a horizontal 
concentration gradient of that species, a horizontal concentration gradient of the other species or 
by a horizontal gradient of the vertical velocity U. In addition, to solve for Cl, c2 and U one must 
use the macroscopic vertical momentum equation [63]. 

The stability of an initially quiescent homogeneous bidisperse suspension was then examined on 
the basis of these equations, [51], [57] and [63]. The growth rate/5 was determined for a small 
sinusoidal disturbance (in Cl, c2 and U) with wavenumber J~ in the horizontal Xl-direction. In this 
manner, the necessary and sufficient conditions for stability ([73]) were obtained. An approximate 
analysis was done for a specific example for which it was shown instability should occur. The order 
of magnitude of the growth rate obtained for this example agree with the experimental results of 
Weiland et al. (1984). In addition, it should be noted that since the growth rate was found to be 
of order Cl c2 it would be difficult to observe the instability at the low concentrations for which the 
present theory is valid. Indeed, an analysis by Batchelor & Janse van Rensburg (1986) of 
experimental results indicated observed instability only for c~ c2 > 6 x 10 -3. Should the radius at 
of one type of particle, species 1, be much larger than that of the other, species 2, i.e. al/a2 >> 1, 
then the particle of species 2 will merely move along the streamlines around the particle of species 
1. Thus, no solid-solid particle contact will occur, resulting in C, D and E in [71] all being zero, 
implying that the suspension would be neutrally stable. This agrees with the experimental results 
of Batchelor & Janse van Rensburg (1986) of no observable instability for such a case. 

An alternative explanation of the instability of sedimenting bidisperse suspensions was presented 
by Batchelor & Janse van Rensburg (1986), in which they considered variations of Cl and c2 in only 
the vertical direction and wrote continuity equations for each particle species, assuming certain 
relationships between the sedimentation velocities and the particle concentrations Cl and c2. In this 
manner they were able to show that the suspension, under certain conditions, could be unstable 
to small variations of Cl and c2 in the vertical direction. 

At the present time, it does not appear to be possible to say whether the mechanism considered 
in the present theory or that considered by Batchelor & Janse van Rensburg (or possibly some other 
mechanism) is responsible for the initial instability of a bidisperse suspension. The experiments of 
Weiland et al. (1984) indicate the formation of wide vertical streaming columns, whereas those of 
Batchelor & Janse van Rensburg (1986) indicate a fine-scale grainy appearance immediately after 
the start of sedimentation. The latter grainy appearance would then slowly develop into either 
"blobs" or into vertical streaming columns, depending on the system being examined. Thus it 
would appear, at least in some situations, that the initial instability is of a three-dimensional nature. 
However, the present theory does present mechanisms [particularly mechanism (ii) described in 
section 7] which can result in the maintenance and amplification of the vertical streaming columns 
once they are formed, despite diffusive effects [such as mechanism (iv) described in section 7]. 
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APPENDIX 

For the close collisions of spheres with non-hydrodynamic effects (such as solid-solid contact) 
considered here, the time between collisons is of order (a /cV)  whilst the displacement of spheres 
due to such a collision is of order a. (Here a is a characteristic particle size, V is a characteristic 
sedimentation velocity of one particle relative to another and c is a characteristic particle 
concentration.) This results in a horizontal velocity Vh and diffusivity D of the particles, where 

Vh~-CV and D ~ - c a V .  [A.I] 

However, spheres can also be transported horizontally by three-particle hydrodynamic collisions. 
Such encounters of three particles in which they are of distances of order a apart occur for a given 
particle only at times of order (a/c2V) and result in a displacement of order a. Hence they result 
in values of Vh and D of order 

vh ~- & V  and D ~- &aV.  [A.2] 

If the three-particle interaction is such that two of the particles (A and B say) are at a distance 
of order a apart whilst the third particle (C say) is at a distance of order l = c -  1/3a from particles 
A and B (l being the mean interparticle distance in the suspension), then A and B induce a velocity 
at C (and vice versa) of order Vail  = c ~/3 Vfor a time of order a / V ( t h e  interaction time for particles 
A and B). Thus, displacements of order c j/3 a are produced in times of order (a /cV)  (the time 
between close interactions for two particles). Hence, such interactions result in values of vh and D 
of order 

1) h "~ C4/3V and D "~ c S I 3 a V .  [A.3] 

Should the three-particle interactions be such that particles A, B and C are at a distance of order 
l apart, then particle B experiences an additional shear flow of order (Vail:) due to the disturbance 
flow of particle A. Thus at sphere C, this produces an additional disturbance velocity due to particle 
B of order (a4V/l  4) = c 4/3 V. Thus, in the interaction time of order ( l /V)  = c-l/3a/V, particle B 
moves a distance ca. Hence, such interactions results in values of Vh and D of order 

U h ~- c 4 / 3 V  and D ~ c 7 / 3 a V .  [A.4] 

We note that the values of Vh and D given by [A.2]-[A.4] for three-particle hydrodynamic 
interactions are all much smaller (for c ,~ 1) than the values given by [A.1] for two-particle 
interactions with non-hydrodynamic effects and, as such, it is valid at lowest order to neglect the 
effects of three-particle hydrodynamic interactions. 


